Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology

Autor: Tran, Viet Chi, Castellan, Gwenaëlle, Cousien, Anthony, Tran, Chi
Přispěvatelé: Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé - UMR 8524 (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Infection, Anti-microbiens, Modélisation, Evolution (IAME (UMR_S_1137 / U1137)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Sorbonne Paris Cité (USPC), ANRS 95146, Chaire 'Modélisation Mathématique et Biodiversité' of Veolia Environnement-Ecole Polytechnique-Museum National d'Histoire Naturelle-Fondation X, ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), ANR-16-CE32-0007,CADENCE,Propagation de processus épidémiques sur des réseaux dynamiques de mouvements d’animaux avec application aux bovins en France(2016), Laboratoire Paul Painlevé (LPP), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR-16-CE32-0007,CADENCE,Propagation de processus épidémiques sur des réseaux dynamiques de mouvements d'animaux avec application aux bovins en France(2016), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), Centre National de la Recherche Scientifique (CNRS)-Université de Lille
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Statistics and Probability
FOS: Computer and information sciences
model selection
Sensitivity analysis in a stochastic framework
49Q12
Mean squared error
Stochastic modelling
Mathematics - Statistics Theory
Statistics Theory (math.ST)
62G08
62P10
applications to Epidemiology
Statistics - Applications
01 natural sciences
Nadaraya-Watson estimator
010104 statistics & probability
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Convergence (routing)
FOS: Mathematics
Applied mathematics
Applications (stat.AP)
0101 mathematics
Randomness
Mathematics
[STAT.AP]Statistics [stat]/Applications [stat.AP]
spread of the Hepatitis Virus C among drug users
Model selection
010102 general mathematics
adaptive non-parametric inference
warped wavelets
Nonparametric statistics
Sobol indices of order 1
Estimator
Sobol sequence
[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]
[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
Statistics
Probability and Uncertainty

SIR model
Zdroj: Electron. J. Statist. 14, no. 1 (2020), 50-81
Electronic journal of statistics
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2020, 14 (1), pp.50-81. ⟨10.1214/19-EJS1627⟩
Electronic Journal of Statistics
Electronic Journal of Statistics, 2020, 14 (1), pp.50-81. ⟨10.1214/19-EJS1627⟩
Electronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2020, 14 (1), pp.50-81. ⟨10.1214/19-EJS1627⟩
ISSN: 1935-7524
DOI: 10.1214/19-EJS1627⟩
Popis: International audience; Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output's variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators.
Databáze: OpenAIRE