Kähler-Einstein metrics on group compactifications

Autor: Thibaut Delcroix
Přispěvatelé: École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Geometric And Functional Analysis
Geometric And Functional Analysis, 2017, 27 (1), pp.78-129. ⟨10.1007/s00039-017-0394-y⟩
DOI: 10.1007/s00039-017-0394-y⟩
Popis: International audience; We obtain a necessary and sufficient condition of existence of a Kähler-Einstein metric on a $G\times G$-equivariant Fano compactification of a complex connected reductive group $G$ in terms of the associated polytope. This condition is not equivalent to the vanishing of the Futaki invariant. The proof relies on the continuity method and its translation into a real Monge-Ampère equation, using the invariance under the action of a maximal compact subgroup $K\times K$.
Databáze: OpenAIRE