Deterministic non-adaptive contention resolution on a shared channel
Autor: | Gianluca De Marco, Dariusz R. Kowalski, Grzegorz Stachowiak |
---|---|
Rok vydání: | 2023 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Distributed Parallel and Cluster Computing Computational Theory and Mathematics General Computer Science Computer Networks and Communications Information Theory (cs.IT) Computer Science - Information Theory Applied Mathematics Distributed Parallel and Cluster Computing (cs.DC) Theoretical Computer Science |
Zdroj: | Journal of Computer and System Sciences. 133:1-22 |
ISSN: | 0022-0000 |
DOI: | 10.1016/j.jcss.2022.11.001 |
Popis: | In a multiple access channel, autonomous stations are able to transmit and listen to a shared device. A fundamental problem, called \textit{contention resolution}, is to allow any station to successfully deliver its message by resolving the conflicts that arise when several stations transmit simultaneously. Despite a long history on such a problem, most of the results deal with the static setting when all stations start simultaneously, while many fundamental questions remain open in the realistic scenario when stations can join the channel at arbitrary times. In this paper, we explore the impact that three major channel features (asynchrony among stations, knowledge of the number of contenders and possibility of switching off stations after a successful transmission) can have on the time complexity of non-adaptive deterministic algorithms. We establish upper and lower bounds allowing to understand which parameters permit time-efficient contention resolution and which do not. |
Databáze: | OpenAIRE |
Externí odkaz: |