Catalyst-Free Crosslinking Modification of Nata-de-Coco-Based Bacterial Cellulose Nanofibres Using Citric Acid for Biomedical Applications

Autor: Mohamed Nainar Mohamed Ansari, Abdul Halim Mohd Yusof, Mohammed Ahmad Wsoo, Ahmad Mohammed Gumel, Nadirul Hasraf Mat Nayan, Mohd Helmi Sani, Muhammad Hanif Ramlee, Shafinaz Shahir, Saiful Izwan Abd Razak, Nurliyana Ahmad Zawawi, Rabiu Salihu
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Polymers
Volume 13
Issue 17
Polymers, Vol 13, Iss 2966, p 2966 (2021)
ISSN: 2073-4360
DOI: 10.3390/polym13172966
Popis: Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC’s fibre collapse phenomenon (i.e., its inability to reabsorb water after dehydration) is one of the drawbacks that limit its potential. To overcome this, a catalyst-free thermal crosslinking reaction was employed to modify BC using citric acid (CA) without compromising its biocompatibility. FTIR, XRD, SEM/EDX, TGA, and tensile analysis were carried out to evaluate the properties of the modified BC (MBC). The results confirm the fibre crosslinking phenomenon and the improvement of some properties that could be advantageous for various applications. The modified nanofibre displayed an improved crystallinity and thermal stability with increased water absorption/swelling and tensile modulus. The MBC reported here can be used for wound dressings and tissue scaffolding.
Databáze: OpenAIRE