On the Lebesgue constant of subperiodic trigonometric interpolation
Autor: | Gaspare Da Fies, Marco Vianello |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Discrete mathematics
Mathematics(all) Numerical Analysis Mathematics::Dynamical Systems Conjecture Applied Mathematics General Mathematics Mathematical analysis Value (computer science) Lebesgue integration Mathematics::Numerical Analysis symbols.namesake symbols Computer Science::General Literature Algebraic number Chebyshev nodes Constant (mathematics) Analysis Trigonometric interpolation Mathematics Interpolation |
Popis: | We solve a recent conjecture, proving that the Lebesgue constant of Chebyshev-like angular nodes for trigonometric interpolation on a subinterval [[email protected],@w] of the full period [[email protected],@p] is attained at +/[email protected], and its value is independent of @w and coincides with the Lebesgue constant of algebraic interpolation at the classical Chebyshev nodes in (-1,1). |
Databáze: | OpenAIRE |
Externí odkaz: |