Minimal Architecture Lithium Batteries: Toward High Energy Density Storage Solutions
Autor: | Jacopo Celè, Sylvain Franger, Yann Lamy, Sami Oukassi |
---|---|
Přispěvatelé: | Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Small Small, 2023, 2023, pp.2207657. ⟨10.1002/smll.202207657⟩ |
ISSN: | 1613-6829 1613-6810 |
DOI: | 10.1002/smll.202207657 |
Popis: | International audience; The coupling of thick and dense cathodes with anode-free lithium metal configuration is a promising path to enable the next generation of high energy density solid-state batteries. In this work, LiCoO$_2$ (30 µm)/LiPON/Ti is considered as a model system to study the correlation between fundamental electrode properties and cell electrochemical performance, and a physical model is proposed to understand the governing phenomena. The first cycle loss is demonstrated to be constant and independent of both cathode thickness and anode configuration, and only ascribed to the diffusion coefficient's abrupt fall at high lithium contents. Subsequent cycles achieve close to 100% coulombic efficiency. The examination of the effect of cathode thickness demonstrate a nearly linear correlation with areal specific capacity for sub-100 µm LiCoO$_2$ and 0.1 mA cm$^{−2}$ current density. These findings bring new insights to better understand the energy density limiting factors and to suggest potential optimization approaches. |
Databáze: | OpenAIRE |
Externí odkaz: |