Some congruences involving binomial coefficients

Autor: Zhi-Wei Sun, Hui-Qin Cao
Rok vydání: 2015
Předmět:
Zdroj: Colloquium Mathematicum. 139:127-136
ISSN: 1730-6302
0010-1354
DOI: 10.4064/cm139-1-8
Popis: Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let $p>3$ be a prime. We show that $$T_{p-1}\equiv\left(\frac p3\right)3^{p-1}\ \pmod{p^2},$$ where the central trinomial coefficient $T_n$ is the constant term in the expansion of $(1+x+x^{-1})^n$. We also prove three congruences modulo $p^3$ conjectured by Sun, one of which is $$\sum_{k=0}^{p-1}\binom{p-1}k\binom{2k}k((-1)^k-(-3)^{-k})\equiv \left(\frac p3\right)(3^{p-1}-1)\ \pmod{p^3}.$$ In addition, we get some new combinatorial identities.
9 pages, final published version
Databáze: OpenAIRE