Generalized Kubelka-Munk approximation for multiple scattering of polarized light
Autor: | Christopher Sandoval, Arnold D. Kim |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
010504 meteorology & atmospheric sciences Scattering business.industry Plane wave Spherical harmonics Polarization (waves) System of linear equations 01 natural sciences Atomic and Molecular Physics and Optics Light scattering Electronic Optical and Magnetic Materials 010309 optics Optics 0103 physical sciences Radiative transfer Computer Vision and Pattern Recognition business Circular polarization 0105 earth and related environmental sciences |
Zdroj: | Journal of the Optical Society of America. A, Optics, image science, and vision. 34(2) |
ISSN: | 1520-8532 |
Popis: | We introduce a new model for multiple scattering of polarized light by statistically isotropic and mirror-symmetric particles, which we call the generalized Kubelka–Munk (gKM) approximation. It is obtained through a linear transformation of the system of equations resulting from applying the double spherical harmonics approximation of order one to the vector radiative transfer equation (vRTE). The result is a 32×32 system of differential equations that is much simpler than the vRTE. We compare numerical solutions of the vRTE with the gKM approximation for the problem in which a plane wave is normally incident on a plane-parallel slab composed of a uniform absorbing and scattering medium. These comparisons show that the gKM approximation accurately captures the key features of the polarization state of multiply scattered light. In particular, the gKM approximation accurately captures the complicated polarization characteristics of light backscattered by an optically thick medium composed of a monodisperse distribution of dielectric spheres over a broad range of sphere sizes. |
Databáze: | OpenAIRE |
Externí odkaz: |