Design, synthesis and cholinesterase inhibitory properties of new oxazole benzylamine derivatives
Autor: | Ana Grgičević, Zrinka Kovarik, Ivana Šagud, Josipa Hodak, Tena Čadež, Irena Škorić, Kornelija Lasić, Nikolina Maček Hrvat, Milena Dragojević |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Benzylamines
synthesis Aché cholinesterase RM1-950 Inhibitory postsynaptic potential 01 natural sciences chemistry.chemical_compound Inhibitory Concentration 50 Structure-Activity Relationship Benzylamine Drug Discovery arylethenyl-oxazole benzylamine electrocyclization naphthoxazole Oxazoles Butyrylcholinesterase Cholinesterase Oxazole Pharmacology chemistry.chemical_classification biology 010405 organic chemistry Arylethenyl-oxazole General Medicine Electrochemical Techniques Photochemical Processes Acetylcholinesterase language.human_language 0104 chemical sciences Molecular Docking Simulation 010404 medicinal & biomolecular chemistry Enzyme chemistry Biochemistry Drug Design biology.protein language Therapeutics. Pharmacology Cholinesterase Inhibitors Research Paper |
Zdroj: | Journal of Enzyme Inhibition and Medicinal Chemistry Journal of Enzyme Inhibition and Medicinal Chemistry, Vol 35, Iss 1, Pp 460-467 (2020) |
DOI: | 10.1080/14756366.2019.1707197 |
Popis: | The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50≫100 µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.HIGHLIGHTSSeries of oxazole benzylamines were designed and synthesisedThe tested compounds showed binding selectivity for BChENaphthoxazoles were more potent AChE inhibitors Series of oxazole benzylamines were designed and synthesised The tested compounds showed binding selectivity for BChE Naphthoxazoles were more potent AChE inhibitors |
Databáze: | OpenAIRE |
Externí odkaz: |