Effective Locality QCD calculations and the Gribov copy problem
Autor: | Thierry Grandou, Ralf Hofmann |
---|---|
Přispěvatelé: | Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA) |
Rok vydání: | 2020 |
Předmět: |
Nuclear and High Energy Physics
High Energy Physics::Lattice eikonal approximation quantum chromodynamics: nonperturbative functional methods General Physics and Astronomy random matrices 01 natural sciences 12.38.Cy Non-perturbative QCD Functional methods 0103 physical sciences invariance: gauge 010306 general physics Mathematical physics Quantum chromodynamics Physics 010308 nuclear & particles physics Locality mathematical methods Astronomy and Astrophysics matrix model: random Eikonal approximation [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] gauge field theory approximation: strong coupling Random matrix Gribov problem |
Zdroj: | Mod.Phys.Lett.A Mod.Phys.Lett.A, 2020, 35 (27), pp.2050230. ⟨10.1142/S0217732320502302⟩ |
ISSN: | 1793-6632 0217-7323 |
DOI: | 10.1142/s0217732320502302 |
Popis: | International audience; Standard functional manipulations have been proven to imply a remarkable property satisfied by the fermionic Green’s functions of QCD and dubbed effective locality. Resulting from a full gauge invariant summation of the gauge field degrees of freedom, effective locality is a non-perturbative property of QCD. This unexpected result has lead to suspect that the famous Gribov copy problem had been somewhat overlooked. It is argued that it is not so. The analysis is conducted in the strong coupling limit, relevant to the Gribov problem. |
Databáze: | OpenAIRE |
Externí odkaz: |