PROJECTING A MATURE EPIDEMIC: A SIMPLE TOOL WITH AN APPLICATION TO COVID-19 DEATHS
Autor: | Marc Artzrouni, Randy Wykoff |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), East Tennessee State University (ETSU) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Coronavirus disease 2019 (COVID-19)
Statistical model 01 natural sciences 3. Good health law.invention 010104 statistics & probability 03 medical and health sciences 0302 clinical medicine Transmission (mechanics) Exponential growth law Simple (abstract algebra) Statistics [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie 030212 general & internal medicine Growth rate 0101 mathematics Baseline (configuration management) Mathematics |
Popis: | We describe a new statistical model for the spread of a mature epidemic, i.e. one characterized by an exponentially decaying growth rate of the cumulative number of cases/deaths – the speed of this decay being measured by the growth rate’s half-life. If such a pattern is observed during the recent past, then it can be extrapolated. A spreadsheet is made available that allows users to input weekly cumulative numbers of deaths and obtain an estimate of the growth rate’s baseline half-life and the corresponding projections. These projections can be compared to those with a larger half-life (if a protracted epidemic is expected, e.g. due to second wave), or with a smaller one (if successful therapies or mitigation efforts reduce transmission). The model is applied to deaths due to COVID-19 in California in May-June 2020. |
Databáze: | OpenAIRE |
Externí odkaz: |