In silico evidence of de novo interactions between ribosomal and Epstein - Barr virus proteins

Autor: Shruti Prashant Talwar, Edmund Ui Hang Sim
Rok vydání: 2019
Předmět:
Zdroj: BMC Molecular and Cell Biology, Vol 20, Iss 1, Pp 1-12 (2019)
BMC Molecular and Cell Biology
ISSN: 2661-8850
DOI: 10.1186/s12860-019-0219-y
Popis: Background Association of Epstein-Barr virus (EBV) encoded latent gene products with host ribosomal proteins (RPs) has not been fully explored, despite their involvement in the aetiology of several human cancers. To gain an insight into their plausible interactions, we employed a computational approach that encompasses structural alignment, gene ontology analysis, pathway analysis, and molecular docking. Results In this study, the alignment analysis based on structural similarity allows the prediction of 48 potential interactions between 27 human RPs and the EBV proteins EBNA1, LMP1, LMP2A, and LMP2B. Gene ontology analysis of the putative protein-protein interactions (PPIs) reveals their probable involvement in RNA binding, ribosome biogenesis, metabolic and biosynthetic processes, and gene regulation. Pathway analysis shows their possible participation in viral infection strategies (viral translation), as well as oncogenesis (Wnt and EGFR signalling pathways). Finally, our molecular docking assay predicts the functional interactions of EBNA1 with four RPs individually: EBNA1-eS10, EBNA1-eS25, EBNA1-uL10 and EBNA1-uL11. Conclusion These interactions have never been revealed previously via either experimental or in silico approach. We envisage that the calculated interactions between the ribosomal and EBV proteins herein would provide a hypothetical model for future experimental studies on the functional relationship between ribosomal proteins and EBV infection. Electronic supplementary material The online version of this article (10.1186/s12860-019-0219-y) contains supplementary material, which is available to authorized users.
Databáze: OpenAIRE