Finite group actions and cyclic branched covers of knots in $\mathbf{S}^3$

Autor: Boileau, Michel, Franchi, Clara, Mecchia, Mattia, Paoluzzi, Luisa, Zimmermann, Bruno
Přispěvatelé: Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Università cattolica del Sacro Cuore [Brescia] (Unicatt), Università degli studi di Trieste = University of Trieste, Università degli studi di Trieste
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Journal of topology
Journal of topology, Oxford University Press, 2018, 11 (283-308), ⟨10.1112/topo.12052⟩
ISSN: 1753-8424
1753-8416
DOI: 10.1112/topo.12052⟩
Popis: We show that a hyperbolic $3$-manifold can be the cyclic branched cover of at most fifteen knots in $\mathbf{S}^3$. This is a consequence of a general result about finite groups of orientation preserving diffeomorphisms acting on $3$-manifolds. A similar, although weaker, result holds for arbitrary irreducible $3$-manifolds: an irreducible $3$-manifold can be the cyclic branched cover of odd prime order of at most six knots in $\mathbf{S}^3$.
31 pages, 1 figure. Changes from v2: The paper has been substantially reorganized, in particular the proof of Theorem 2 was considerably shortened. Accepted for publication by the Journal of Topology
Databáze: OpenAIRE