Admissible Orders of Jordan Loops

Autor: Michael Kinyon, Kyle Pula, Petr Vojtěchovský
Rok vydání: 2009
Předmět:
Zdroj: Journal of Combinatorial Designs. 17:103-118
ISSN: 1520-6610
1063-8539
DOI: 10.1002/jcd.20186
Popis: A commutative loop is Jordan if it satisfies the identity $x^2 (y x) = (x^2 y) x$. Using an amalgam construction and its generalizations, we prove that a nonassociative Jordan loop of order $n$ exists if and only if $n\geq 6$ and $n\neq 9$. We also consider whether powers of elements in Jordan loops are well-defined, and we construct an infinite family of finite simple nonassociative Jordan loops.
15 pages. V2: final version with small changes suggested by referee, to appear in J. Combinatorial Design
Databáze: OpenAIRE