Growth of PbTe nanowires by molecular beam epitaxy

Autor: Sander G Schellingerhout, Eline J de Jong, Maksim Gomanko, Xin Guan, Yifan Jiang, Max S M Hoskam, Jason Jung, Sebastian Koelling, Oussama Moutanabbir, Marcel A Verheijen, Sergey M Frolov, Erik P A M Bakkers
Přispěvatelé: Advanced Nanomaterials & Devices, Plasma & Materials Processing, Atomic scale processing, Center for Quantum Materials and Technology Eindhoven
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Materials for Quantum Technology
Materials for Quantum Technology, 2(1):015001. IOP Publishing Ltd.
DOI: 10.1088/2633-4356/ac4fba
Popis: Advances in quantum technology may come from the discovery of new materials systems that improve the performance or allow for new functionality in electronic devices. Lead telluride (PbTe) is a member of the group IV–VI materials family that has significant untapped potential for exploration. Due to its high electron mobility, strong spin–orbit coupling and ultrahigh dielectric constant it can host few-electron quantum dots and ballistic quantum wires with opportunities for control of electron spins and other quantum degrees of freedom. Here, we report the fabrication of PbTe nanowires by molecular beam epitaxy. We achieve defect-free single crystalline PbTe with large aspect ratios up to 50 suitable for quantum devices. Furthermore, by fabricating a single nanowire field effect transistor, we attain bipolar transport, extract the bandgap and observe Fabry–Pérot oscillations of conductance, a signature of quasiballistic transmission.
Databáze: OpenAIRE