GmWAK1, Novel Wall-Associated Protein Kinase, Positively Regulates Response of Soybean to Phytophthora sojae Infection

Autor: Ming Zhao, Ninghui Li, Simei Chen, Junjiang Wu, Shengfu He, Yuxin Zhao, Xiran Wang, Xiaoyu Chen, Chuanzhong Zhang, Xin Fang, Yan Sun, Bo Song, Shanshan Liu, Yaguang Liu, Pengfei Xu, Shuzhen Zhang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: International Journal of Molecular Sciences; Volume 24; Issue 1; Pages: 798
ISSN: 1422-0067
DOI: 10.3390/ijms24010798
Popis: Phytophthora root rot is a destructive soybean disease worldwide, which is caused by the oomycete pathogen Phytophthora sojae (P. sojae). Wall-associated protein kinase (WAK) genes, a family of the receptor-like protein kinase (RLK) genes, play important roles in the plant signaling pathways that regulate stress responses and pathogen resistance. In our study, we found a putative Glycine max wall-associated protein kinase, GmWAK1, which we identified by soybean GmLHP1 RNA-sequencing. The expression of GmWAK1 was significantly increased by P. sojae and salicylic acid (SA). Overexpression of GmWAK1 in soybean significantly improved resistance to P. sojae, and the levels of phenylalanine ammonia-lyase (PAL), SA, and SA-biosynthesis-related genes were markedly higher than in the wild-type (WT) soybean. The activities of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants in GmWAK1-overexpressing (OE) plants were significantly higher than those in in WT plants treated with P. sojae; reactive oxygen species (ROS) and hydrogen peroxide (H2O2) accumulation was considerably lower in GmWAK1-OE after P. sojae infection. GmWAK1 interacted with annexin-like protein RJ, GmANNRJ4, which improved resistance to P. sojae and increased intracellular free-calcium accumulation. In GmANNRJ4-OE transgenic soybean, the calmodulin-dependent kinase gene GmMPK6 and several pathogenesis-related (PR) genes were constitutively activated. Collectively, these results indicated that GmWAK1 interacts with GmANNRJ4, and GmWAK1 plays a positive role in soybean resistance to P. sojae via a process that might be dependent on SA and involved in alleviating damage caused by oxidative stress.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje