Temporal dynamics of freshwater planktonic parasites inferred using a DNA metabarcoding time-series
Autor: | Elisabeth Funke, Michael T. Monaghan, Silke Van den Wyngaert, Justyna Wolinska, Alena S. Gsell, Kingsly C. Beng |
---|---|
Přispěvatelé: | Aquatic Ecology (AqE) |
Rok vydání: | 2021 |
Předmět: |
M��ggelsee
Genbank Biodiversity Fresh Water Möggelsee Biology Müggelsee Abundance (ecology) aquatic food web RNA Ribosomal 18S Animals DNA Barcoding Taxonomic Parasite hosting Parasites planktonic parasites Ecosystem Chytridiomycota Plan_S-Compliant-TA 18S rRNA gene Ecology Phylum long-term monitoring 500 Naturwissenschaften und Mathematik::570 Biowissenschaften Biologie::570 Biowissenschaften Biologie Plankton biology.organism_classification Infectious Diseases Taxon international metabarcoding Animal Science and Zoology Parasitology Species richness Research Article |
Zdroj: | Parasitology Parasitology, 148(3). Cambridge University Press |
ISSN: | 1469-8161 0031-1820 |
DOI: | 10.1017/s0031182021001293 |
Popis: | Parasites are important components of biodiversity and contributors to ecosystem functioning, but are often neglected in ecological studies. Most studies examine model parasite systems or single taxa, thus our understanding of community composition is lacking. Here, the seasonal and annual dynamics of parasites was quantified using a 5-year metabarcoding time-series of freshwater plankton, collected weekly. We first identified parasites in the dataset using literature searches of the taxonomic match and using sequence metadata from the National Center for Biotechnology Information (NCBI) nucleotide database. In total, 441 amplicon sequence variants (belonging to 18 phyla/clades) were classified as parasites. The four phyla/clades with the highest relative read abundance and richness were Chytridiomycota, Dinoflagellata, Oomycota and Perkinsozoa. Relative read abundance of total parasite taxa, Dinoflagellata and Perkinsozoa significantly varied with season and was highest in summer. Parasite richness varied significantly with season and year, and was generally lowest in spring. Each season had distinct parasite communities, and the difference between summer and winter communities was most pronounced. Combining DNA metabarcoding with searches of the literature and NCBI metadata allowed us to characterize parasite diversity and community dynamics and revealed the extent to which parasites contribute to the diversity of freshwater plankton communities. |
Databáze: | OpenAIRE |
Externí odkaz: |