Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model
Autor: | Carolina Marchant, Fabrizio Ruggeri, Jorge I. Figueroa-Zúñiga, Víctor Leiva, Rodrigo Puentes |
---|---|
Rok vydání: | 2021 |
Předmět: |
010504 meteorology & atmospheric sciences
bivariate regression models General Mathematics air pollution Air pollution Bivariate analysis medicine.disease_cause R software 01 natural sciences 010104 statistics & probability Covariate Computer Science (miscellaneous) Econometrics medicine 0101 mathematics Engineering (miscellaneous) Air quality index 0105 earth and related environmental sciences Estimation Mahalanobis distance Birnbaum-Saunders distributions lcsh:Mathematics lcsh:QA1-939 diagnostics techniques Outlier Environmental science data science Log-linear model |
Zdroj: | Mathematics, Vol 9, Iss 645, p 645 (2021) Mathematics Volume 9 Issue 6 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math9060645 |
Popis: | Improving air quality is an important environmental challenge of our time. Chile currently has one of the most stable and emerging economies in Latin America, where human impact on natural resources and air quality does not go unperceived. Santiago, the capital of Chile, is one of the cities in which particulate matter (PM) levels exceed national and international limits. Its location and climate cause critical conditions for human health when interaction with anthropogenic emissions is present. In this paper, we propose a predictive model based on bivariate regression to estimate PM levels, related to PM2.5 and PM10, simultaneously. Birnbaum-Saunders distributions are used in the joint modeling of real-world PM2.5 and PM10 data by considering as covariates some relevant meteorological variables employed in similar studies. The Mahalanobis distance is utilized to assess bivariate outliers and to detect suitability of the distributional assumption. In addition, we use the local influence technique for analyzing the impact of a perturbation on the overall estimation of model parameters. In the predictions, we check the categorization for the observed and predicted cases of the model according to the primary air quality regulations for PM. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |