Minima in branching random walks

Autor: Louigi Addario-Berry, Bruce Reed
Přispěvatelé: Monteil, Alain, Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Statistics and Probability
60G50
branching processes
01 natural sciences
Combinatorics
Branching (linguistics)
010104 statistics & probability
Branching random walks
[INFO.INFO-MC]Computer Science [cs]/Mobile Computing
[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Probability theory
[INFO.INFO-MC] Computer Science [cs]/Mobile Computing
Branching random walk
Position (vector)
FOS: Mathematics
Mathematics - Combinatorics
0101 mathematics
Mathematics
60J80
[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI]
010102 general mathematics
Probability (math.PR)
16. Peace & justice
Random walk
Exponential function
Maxima and minima
Bounded function
60J80 (Primary)
60G50 (Secondary)

Combinatorics (math.CO)
Statistics
Probability and Uncertainty

random trees
Mathematics - Probability
Zdroj: Annals of Probability
Annals of Probability, 2009, 37, pp.1044―1079
Ann. Probab. 37, no. 3 (2009), 1044-1079
Annals of Probability, Institute of Mathematical Statistics, 2009, 37, pp.1044―1079
ISSN: 0091-1798
2168-894X
Popis: Given a branching random walk, let $M_n$ be the minimum position of any member of the $n$th generation. We calculate $\mathbf{E}M_n$ to within O(1) and prove exponential tail bounds for $\mathbf{P}\{|M_n-\mathbf{E}M_n|>x\}$, under quite general conditions on the branching random walk. In particular, together with work by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89--108], our results fully characterize the possible behavior of $\mathbf {E}M_n$ when the branching random walk has bounded branching and step size.
Published in at http://dx.doi.org/10.1214/08-AOP428 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Databáze: OpenAIRE