Popis: |
Spermatids generate diverse and unusual actin and microtubule populations during spermiogenesis to fulfill mechanical and cargo transport functions assisted by motor and non-motor proteins. Disruption of cargo transport may lead to teratozoospermia and consequent male infertility. How motor and non-motor proteins utilize the cytoskeleton to transport cargos during sperm development is not clear. Filamentous actin (F-actin) and the associated motor protein myosin Va participate in the transport of Golgi-derived proacrosomal vesicles to the acrosome and along the manchette. The acrosome is stabilized by the acroplaxome, a cytoskeletal plate anchored to the nuclear envelope. The acroplaxome plate harbors F-actin and actin-like proteins as well as several other proteins, including keratin 5/Sak57, Ran GTPase, Hook1, dynactin p150Glued, cenexin-derived ODF2, testis-expressed profilin-3 and profilin-4, testis-expressed Fer tyrosine kinase (FerT), members of the ubiquitin-proteasome system and cortactin. Spermatids express transcripts encoding the non-spliced form of cortactin, a F-actin-regulatory protein. Tyrosine phosphorylated cortactin and FerT coexist in the acrosome-acroplaxome complex. Hook1 and p150Glued, known to participate in vesicle cargo transport, are sequentially seen from the acroplaxome to the manchette to the head-tail coupling apparatus (HTCA). The golgin Golgi-microtubule associated protein GMAP210 resides in the cis-Golgi whereas the intraflagellar protein IFT88 localizes in the trans-Golgi network. Like Hook1 and p150Glued, GMAP210 and IFT88 colocalize at the cytosolic side of proacrosomal vesicles and, following vesicle fusion, become part of the outer and inner acrosomal membranes before relocating to the acroplaxome, manchette and HTCA. A hallmark of the manchette and axoneme is microtubule heterogeneity, determined by the abundance of acetylated, tysosinated and glutamylated tubulin isoforms produced by post-translational modifications. We postulate that the construction of the male gamete requires microtubule and F-actin tracks and specific molecular motors and associated non-motor proteins for the directional positioning of vesicular and non-vesicular cargos at specific intracellular sites. |