Function of a Conserved Checkpoint Recruitment Domain in ATRIP Proteins
Autor: | Heather L. Ball, Mark Ehrhardt, David Cortez, Walter J. Chazin, Daniel A. Mordes, Gloria G. Glick |
---|---|
Rok vydání: | 2007 |
Předmět: |
Models
Molecular Saccharomyces cerevisiae Proteins DNA damage Molecular Sequence Data Cell Cycle Proteins Saccharomyces cerevisiae Biology DNA-binding protein Replication Protein A Animals Humans Amino Acid Sequence Kinase activity Binding site DNA Fungal Molecular Biology Replication protein A Transcription factor Adaptor Proteins Signal Transducing Genetics Binding Sites Binding protein Cell Cycle Fungal genetics Articles Cell Biology Phosphoproteins Magnetic Resonance Imaging Protein Structure Tertiary Cell biology DNA-Binding Proteins Exodeoxyribonucleases Structural Homology Protein Sequence Alignment DNA Damage Protein Binding Transcription Factors |
Zdroj: | Molecular and Cellular Biology. 27:3367-3377 |
ISSN: | 1098-5549 |
Popis: | The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP. |
Databáze: | OpenAIRE |
Externí odkaz: |