Numerical approximations to the scaled first derivatives of the solution to a two parameter singularly perturbed problem
Autor: | M. L. Pickett, Eugene O'Riordan |
---|---|
Rok vydání: | 2019 |
Předmět: |
Singular perturbation
Two parameter Discretization Continuous solution Applied Mathematics Uniform convergence 010103 numerical & computational mathematics two parameter 01 natural sciences singularly perturbed Mathematics::Numerical Analysis 010101 applied mathematics Computational Mathematics Finite difference scheme Applied mathematics scaled first derivative 0101 mathematics Scaling Mathematics |
Zdroj: | O'Riordan, E & Pickett, M 2019, ' Numerical approximations to the scaled first derivatives of the solution to a two parameter singularly perturbed problem ', Journal of Computational and Applied Mathematics, vol. 347, pp. 128-149 . https://doi.org/10.1016/j.cam.2018.08.004 |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2018.08.004 |
Popis: | A singularly perturbed problem involving two singular perturbation parameters is discretized using the classical upwinded finite difference scheme on an appropriate piecewise-uniform Shishkin mesh. Scaled discrete derivatives (with scaling only used within the layers) are shown to be parameter uniformly convergent to the scaled first derivatives of the continuous solution. |
Databáze: | OpenAIRE |
Externí odkaz: |