Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N cycling in the eastern tropical North Pacific oxygen-deficient zone
Autor: | Sollai, M., Hopmans, Ellen C., Schouten, Stefan, Keil, R.G., Sinninghe Damste, J.S., non-UU output of UU-AW members |
---|---|
Přispěvatelé: | non-UU output of UU-AW members |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Thaumarchaeota
010504 meteorology & atmospheric sciences Microorganism lcsh:Life Biology 01 natural sciences 03 medical and health sciences Water column lcsh:QH540-549.5 Botany 14. Life underwater Ladderane Nitrogen cycle Ecology Evolution Behavior and Systematics 0105 earth and related environmental sciences Earth-Surface Processes 0303 health sciences 030306 microbiology lcsh:QE1-996.5 biology.organism_classification lcsh:Geology lcsh:QH501-531 Anammox lcsh:Ecology Bacteria Archaea |
Zdroj: | Biogeosciences, 12(15), 4725. European Geosciences Union Biogeosciences, Vol 12, Iss 15, Pp 4725-4737 (2015) |
ISSN: | 1726-4189 1726-4170 |
Popis: | In the last decade our understanding of the marine nitrogen cycle has improved considerably thanks to the discovery of two novel groups of microorganisms: ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. Both groups are important in oxygen-deficient zones (ODZs), where they substantially affect the marine N budget. These two groups of microbes are also well known for producing specific membrane lipids, which can be used as biomarkers to trace their presence in the environment. We investigated the occurrence and distribution of AOA and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) ODZ, one of the most prominent ODZs worldwide. Suspended particulate matter (SPM) was collected at different depths of the water column in high resolution, at both a coastal and an open-ocean setting. The SPM was analyzed for AOA- and anammox bacteria-specific intact polar lipids (IPLs), i.e., hexose-phosphohexose (HPH)-crenarchaeol and phosphatidylcholine (PC)-monoether ladderane. Comparison with oxygen profiles reveals that both the microbial groups are able to thrive at low (< 1 μM) concentrations of oxygen. Our results indicate a clear niche segregation of AOA and anammox bacteria in the coastal waters of the ETNP but a partial overlap of the two niches of these microbial species in the open-water setting. The latter distribution suggests the potential for an interaction between the two microbial groups at the open-ocean site, although the nature of this hypothetical interaction (i.e., either competition or cooperation) remains unclear. |
Databáze: | OpenAIRE |
Externí odkaz: |