Controls on streamwater age in a saturation overland flow-dominated catchment

Autor: William E. Dietrich, Daniella M. Rempe, W. Jesse Hahm, Dana Ariel Lapides, David N. Dralle
Rok vydání: 2021
Předmět:
DOI: 10.5194/egusphere-egu21-8102
Popis: Water age and flow pathways should be related; however, it is still generally unclear how integrated catchment runoff generation mechanisms result in streamflow age distributions at the outlet. Here, we combine field observations of runoff generation at the Dry Creek catchment with StorAge Selection (SAS) age models to explore the relationship between streamwater age and runoff pathways. Dry Creek is an intensively monitored catchment in the northern California Coast Ranges with a Mediterranean climate and thin subsurface critical zone. Due to limited storage capacity, runoff response is rapid (~1-2 hours), and total annual streamflow consists predominantly of saturation overland flow, based on field mapping of saturated extents and runoff thresholds. Even though SAS modeling reveals that streamflow is younger at higher wetness states, flow is still typically older than one day and thus older than event water. Because streamflow is mostly overland flow, this means that a significant portion of overland flow must derive from groundwater returning to the surface, consistent with field observations of exfiltrating head gradients, return flow through macropores, and extensive saturation days after storm events. We conclude that even in a landscape with widespread overland flow, runoff pathways may be longer than anticipated, with implications for contaminant delivery and biogeochemical reactions. Our findings have implications for the assumptions built into classic hydrograph separation inferences, namely, that overland flow is not all new water.
Databáze: OpenAIRE