Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle

Autor: Giuseppina di Blasio, Francesco Della Pietra, Nunzia Gavitone
Přispěvatelé: DELLA PIETRA, Francesco, DI BLASIO, Giuseppina, Gavitone, Nunzia, Della Pietra, Francesco
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 278-291 (2018)
Popis: In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λ F ⁢ ( p , Ω ) {\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1 < p < + ∞ {1 . Our aim is to enhance, by means of the 𝒫 {\mathcal{P}} -function method, how it is possible to get several sharp estimates for λ F ⁢ ( p , Ω ) {\lambda_{F}(p,\Omega)} in terms of several geometric quantities associated to the domain. The 𝒫 {\mathcal{P}} -function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.
Databáze: OpenAIRE