Quantitative 3D imaging of partially saturated granular materials under uniaxial compression
Autor: | Edward Andò, Nicole Hüsener, Gioacchino Viggiani, Marius Milatz, Jürgen Grabe |
---|---|
Rok vydání: | 2021 |
Předmět: |
X-ray computed tomography
Shearing (physics) Materials science Suction Geowissenschaften [550] Mechanics Geotechnical Engineering and Engineering Geology Granular material Overburden pressure Uniaxial compression tests Shear strength Partially saturated granular soils Solid mechanics ddc:550 Earth and Planetary Sciences (miscellaneous) Dilation (morphology) ddc:600 Technik [600] Radial stress Volume (compression) |
Zdroj: | Acta Geotechnica 16 (11): 3573-3600 (2021-11-01) |
ISSN: | 1861-1133 1861-1125 |
DOI: | 10.1007/s11440-021-01315-5 |
Popis: | Gauging the mechanical effect of partial saturation in granular materials is experimentally challenging due to the very low suctions resulting from large pores. To this end, a uniaxial (zero radial stress) compression test may be preferable to a triaxial one where confining pressure and membrane effects may erase the contribution of this small suction; however, volume changes are challenging to measure. This work resolves this limitation by using X-ray imaging during in situ uniaxial compression tests on Hamburg Sand and glass beads at three different initial water contents, allowing a suction-dependent dilation to be brought to the light. The acquired tomography volumes also allow the development of air–water and solid–water interfacial areas, water clusters and local strain fields to be measured at the grain scale. These measurements are used to characterise pertinent micro-scale quantities during shearing and to relate them to the measured macroscopic response. The new and well-controlled data acquired during this experimental campaign are hopefully a useful contribution to the modelling efforts—to this end they are shared with the community. |
Databáze: | OpenAIRE |
Externí odkaz: |