Local smooth solutions of the nonlinear Klein-gordon equation

Autor: Ivan Naumkin, Thierry Cazenave
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Universidad Nacional Autónoma de México (UNAM)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems-Series S
Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2021, 14 (5), pp.1649-1672. ⟨10.3934/dcdss.2020448⟩
ISSN: 1937-1632
1937-1179
DOI: 10.3934/dcdss.2020448⟩
Popis: Given any \begin{document}$ \mu _1, \mu _2\in {\mathbb C} $\end{document} and \begin{document}$ \alpha >0 $\end{document} , we prove the local existence of arbitrarily smooth solutions of the nonlinear Klein-Gordon equation \begin{document}$ \partial _{ tt } u - \Delta u + \mu _1 u = \mu _2 |u|^\alpha u $\end{document} on \begin{document}$ {\mathbb R}^N $\end{document} , \begin{document}$ N\ge 1 $\end{document} , that do not vanish, i.e. \begin{document}$ |u (t, x) | >0 $\end{document} for all \begin{document}$ x \in {\mathbb R}^N $\end{document} and all sufficiently small \begin{document}$ t $\end{document} . We write the equation in the form of a first-order system associated with a pseudo-differential operator, then use a method adapted from [Commun. Contemp. Math. 19 (2017), no. 2, 1650038]. We also apply a similar (but simpler than in the case of the Klein-Gordon equation) argument to prove an analogous result for a class of nonlinear Dirac equations.
Databáze: OpenAIRE