Biological treatment of volatile organic compounds (VOCs)-containing wastewaters from wet scrubbers in semiconductor industry
Autor: | Po-Wei Huang, Hai Hsuan Cheng, I-Chun Lu, Liang Ming Whang, Yi-Ju Wu |
---|---|
Rok vydání: | 2021 |
Předmět: |
Environmental Engineering
Hydraulic retention time Health Toxicology and Mutagenesis 0208 environmental biotechnology 02 engineering and technology Wastewater 010501 environmental sciences 01 natural sciences Bioreactors Bioreactor Environmental Chemistry 0105 earth and related environmental sciences Volatile Organic Compounds Wet scrubber Sewage Chemistry Chemical oxygen demand Public Health Environmental and Occupational Health General Medicine General Chemistry Pulp and paper industry Pollution Anoxic waters 020801 environmental engineering Semiconductors Microbial population biology Aeration |
Zdroj: | Chemosphere. 282:131137 |
ISSN: | 0045-6535 |
DOI: | 10.1016/j.chemosphere.2021.131137 |
Popis: | This study investigated biological treatment for two kinds of volatile organic compounds (VOCs)-containing wastewaters collected from wet scrubbers in a semiconductor industry. Batch test results indicated that one wastewater containing highly volatile organic compounds was not suitable for aerated treatment conditions while the other containing much lower volatile organic compounds was suitable for aerobic treatment. Accordingly, two moving bed bioreactors, by adding commercial biocarrier BioNET, were operated under aerobic and anoxic conditions for treating low volatility wastewater (LVW) and high volatility wastewater (HVW), respectively. During 280 days of operation, the aerobic LVW bioreactor attained the highest chemical oxygen demand (COD) removal rate of 98.9 mg-COD/L/h with 81% of COD removal efficiency at hydraulic retention time (HRT) of 1 day. The anoxic HVW bioreactor performed above 80% of COD removal efficiency with the highest COD removal rate of 16.5 mg-COD/L/h at HRT of 2 days after 380 days of operation. The specific COD removal rates at different initial substrate-to-biomass (S0/X0) ratios, using either suspended sludge or microorganisms attached onto BioNET from both bioreactors, followed the Monod-type kinetics, while the half-saturation coefficients were generally higher for the microorganisms onto BioNET due presumably to relatively poor mass transfer efficiency. Based on the results of microbial community analysis using the next generation sequencing technique, the dominant communities of suspended sludge and BioNET, including nitrifiers, denitrifiers, and degraders for polycyclic aromatic hydrocarbons, were similar in the corresponded bioreactors, but microbial community shifts were observed with increased organic loadings. |
Databáze: | OpenAIRE |
Externí odkaz: |