Wave-like Disturbances on the Downstream Wall of an Open Cavity
Autor: | Pedro Paredes Gonzalez, Javier de Vicente Buendia, Eusebio Valero Sánchez, Vassilios Theofilis |
---|---|
Rok vydání: | 2011 |
Předmět: |
Discretization
Física Equations of motion Laminar flow Mechanics 01 natural sciences Instability Aeronáutica 010305 fluids & plasmas Physics::Fluid Dynamics 010101 applied mathematics Control theory 0103 physical sciences Compressibility Boundary value problem 0101 mathematics Low-frequency oscillation Eigenvalues and eigenvectors Mecánica Mathematics |
Zdroj: | Scopus-Elsevier Proceedings of 6th Theoretical Computational Fluid Mechanics Conference | 6th Theoretical Computational Fluid Mechanics Conference | 27/06/2011-30/06/2011 | Honolulu, Hawaii Archivo Digital UPM instname |
DOI: | 10.2514/6.2011-3754 |
Popis: | This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region |
Databáze: | OpenAIRE |
Externí odkaz: |