Domestic waste detection and grasping points for robotic picking up

Autor: Gea, Víctor de, Puente Méndez, Santiago T., Gil, Pablo
Přispěvatelé: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante. Instituto Universitario de Investigación Informática, Automática, Robótica y Visión Artificial
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Popis: This paper presents an AI system applied to location and robotic grasping. Experimental setup is based on a parameter study to train a deep-learning network based on Mask-RCNN to perform waste location in indoor and outdoor environment, using five different classes and generating a new waste dataset. Initially the AI system obtain the RGBD data of the environment, followed by the detection of objects using the neural network. Later, the 3D object shape is computed using the network result and the depth channel. Finally, the shape is used to compute grasping for a robot arm with a two-finger gripper. The objective is to classify the waste in groups to improve a recycling strategy.
Comment: 2 pages, 3 figures, accepted as poster for presentation in ICRA 2021 Workshop: Emerging paradigms for robotic manipulation: from the lab to the productive world
Databáze: OpenAIRE