Minimum spanning tree adaptive image filtering

Autor: Jean Stawiaski, Fernand Meyer
Přispěvatelé: Centre de Morphologie Mathématique (CMM), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Rok vydání: 2009
Předmět:
Zdroj: ICIP
16th IEEE International Conference on Image Processing (ICIP)
16th IEEE International Conference on Image Processing (ICIP), Nov 2009, Le Caire, Egypt. pp.2245-2248, ⟨10.1109/ICIP.2009.5413942⟩
DOI: 10.1109/icip.2009.5413942
Popis: ISBN : 978-1-4244-5653-6; International audience; The main focus of this paper is related to anisotropic morphological edge preserving filters. We present in this work neighborhood filters defined on the minimal spanning tree (MST) of an image (according to a local dissimilarity measure between adjacent pixels). The designed filters take advantage of the property of the MST to detect and follow the local features of an image. This approach leads to neighborhood filters where the structuring elements adapt their shape to the minimal spanning tree structure and therefore to the local image features. We demonstrate the quality of this method on natural and synthetic images.
Databáze: OpenAIRE