Sliding mode control applied to a square-back Ahmed body

Autor: Franck Kerhervé, Jean-Pierre Richard, Wafik Abassi, Laurent Keirsbulck, Marc Lippert, Maxime Feingesicht, Baptiste Plumjeau, Camila Chovet, Andrey Polyakov, Jean-Marc Foucaut
Přispěvatelé: Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS), Chalmers University of Technology [Göteborg], Turbulence Incompressible et Contrôle (TIC ), Département Fluides, Thermique et Combustion (FTC), Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Finite-time control and estimation for distributed systems (VALSE), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 (LMFL), Ecole Centrale de Lille-ONERA-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH], Turbulence Incompressible et Contrôle [TIC ], Finite-time control and estimation for distributed systems [VALSE], Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 [LMFL], Institut Pprime [PPRIME], Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL], Laboratoire de Mécanique de Lille - FRE 3723 [LML]
Rok vydání: 2020
Předmět:
Zdroj: European Journal of Mechanics-B/Fluids
European Journal of Mechanics-B/Fluids, Elsevier, 2020, 81, pp.151-164. ⟨10.1016/j.euromechflu.2019.07.010⟩
European Journal of Mechanics-B/Fluids, Elsevier, 2019, 81, pp.151-164. ⟨10.1016/j.euromechflu.2019.07.010⟩
European Journal of Mechanics-B/Fluids, 2019, 81, pp.151-164. ⟨10.1016/j.euromechflu.2019.07.010⟩
ISSN: 0997-7546
1873-7390
Popis: International audience; We consider the first closed-loop separation control experiment on an Ahmed body using a robust, model-based strategy called "sliding mode control" (SMC). The goal is to reduce and further maintain the aerodynamic drag of the square-back Ahmed body flow at Re h = 9 × 10 4 (based on the body height). This study also investigates the practical feasibility of this approach which shows a great promise for industrial applications. The flow is manipulated by a slotted jet placed on the top trailing edge, combined with a predefined angle direction, and sensed by a drag balance. Base pressure and lift measurements are also obtained in real-time. The interaction between the air jet actuator and the mean near-wake flow are depicted by means of Particle Image Velocimetry. In order to compare this closed-loop strategy we first present two open-loop ones. Continuous blowing is initially used to directly influence the recirculation area and hence achieve a reduction in the drag. Approximately a drag reduction of 8% is accomplished making this approach the "optimal case" control strategy. However, because steady blowing mechanisms lead to the highest energy consumption scheme, this strategy will only serve as the first open-loop control reference. The second open-loop strategy involves three periodic forcing frequencies, St A = 0.0765, 0.135 & 0.405. The influence of these frequencies on the near-wake, and its further drag modification, will be further examined. The proposed sliding mode control (closed-loop strategy) is applied to the same Ahmed body configuration and compared to the open-loop cases. It will be designed on the basis of a simplified input-output model which was recently defined for another flow control application. Last, a second experiment is conducted so to show the disturbance rejection of the controller, corroborating the robustness and efficiency of this control approach. Its limitations and difficulties on an experimental setup are also discussed. SMC is able to reduce and maintain the drag to a desire set-point regardless external flow perturbations. Our control strategy was recently used in another context (flow reattachement on a wing) with the same robustness. These successes make guess it is applicable to multiple experimental and industrial contexts.
Databáze: OpenAIRE