Isometries of a generalized numerical radius

Autor: Maria Inez Cardoso Gonçalves, A. R. Sourour
Rok vydání: 2008
Předmět:
Zdroj: Linear Algebra and its Applications. 429(7):1478-1488
ISSN: 0024-3795
DOI: 10.1016/j.laa.2008.04.007
Popis: For 0 q 1 , the q -numerical range is defined on the algebra M n of all n × n complex matrices by W q ( A ) = { x ∗ Ay : x , y ∈ C n , ∥ x ∥ = ∥ y ∥ = 1 , 〈 y , x 〉 = q } . The q -numerical radius is defined by r q ( A ) = max { | μ | : μ ∈ W q ( A ) } . We characterize isometries of the metric space ( M n , r q ) , i.e., the maps φ : M n → M n that satisfy r q ( A - B ) = r q ( φ ( A ) - φ ( B ) ) . We also characterize maps on M n that preserves the q -numerical range. The maps are not assumed to be linear.
Databáze: OpenAIRE