Involutive representations of coordinate algebras and quantum spaces

Autor: Jean-Christophe Wallet, Timothé Poulain, Tajron Jurić
Přispěvatelé: Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Jazyk: angličtina
Předmět:
High Energy Physics - Theory
Nuclear and High Energy Physics
Pure mathematics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
space: Poisson
FOS: Physical sciences
plane wave
algebra: Lie
quantum space
01 natural sciences
[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]
group: representation
Quantization (physics)
non-Commutative Geometry
space-Time Symmetries
field theories in lower dimensions
models of quantum gravity
Poisson manifold
0103 physical sciences
Simply connected space
Lie algebra
Models of Quantum Gravity
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
010306 general physics
Mathematical Physics
noncommutative
Physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
010308 nuclear & particles physics
Field Theories in Lower Dimensions
Polar decomposition
Space-Time Symmetries
Lie group
Mathematical Physics (math-ph)
Noncommutative geometry
field theory: scalar
High Energy Physics - Theory (hep-th)
SU(2)
Product (mathematics)
Non-Commutative Geometry
lcsh:QC770-798
[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]
quantization
Zdroj: Journal of High Energy Physics
Journal of High Energy Physics, Vol 2017, Iss 7, Pp 1-32 (2017)
JHEP
JHEP, 2017, 07, pp.116. ⟨10.1007/JHEP07(2017)116⟩
JHEP, 2017, 07, pp.116. 〈10.1007/JHEP07(2017)116〉
Journal of High Energy Physics, Springer, 2017, 07, pp.116. ⟨10.1007/JHEP07(2017)116⟩
ISSN: 1029-8479
1126-6708
DOI: 10.1007/jhep07(2017)116
Popis: We show that $\frak{su}(2)$ Lie algebras of coordinate operators related to quantum spaces with $\frak{su}(2)$ noncommutativity can be conveniently represented by $SO(3)$-covariant poly-differential involutive representations. We show that the quantized plane waves obtained from the quantization map action on the usual exponential functions are determined by polar decomposition of operators combined with constraint stemming from the Wigner theorem for $SU(2)$. Selecting a subfamily of $^*$-representations, we show that the resulting star-product is equivalent to the Kontsevich product for the Poisson manifold dual to the finite dimensional Lie algebra $\mathfrak{su}(2)$. We discuss the results, indicating a way to extend the construction to any semi-simple non simply connected Lie group and present noncommutative scalar field theories which are free from perturbative UV/IR mixing.
29 pages, several paragraphs added, published in JHEP
Databáze: OpenAIRE