Thioether Macrocyclic Peptides Selected against TET1 Compact Catalytic Domain Inhibit TET1 Catalytic Activity
Autor: | Roman Belle, Kazuharu Hanada, Kosuke Nishio, Noboru Ohsawa, Hiroaki Suga, Takayuki Katoh, Akane Kawamura, Mikako Shirouzu, Toru Sengoku, Shigeyuki Yokoyama |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Macrocyclic Compounds Protein family Peptide Sulfides Peptides Cyclic 01 natural sciences Biochemistry Mixed Function Oxygenases 03 medical and health sciences chemistry.chemical_compound Thioether Catalytic Domain Proto-Oncogene Proteins Drug Discovery Humans Amino Acid Sequence Binding site Molecular Biology Demethylation Regulation of gene expression chemistry.chemical_classification 010405 organic chemistry Organic Chemistry DNA Methylation 0104 chemical sciences 030104 developmental biology DNA demethylation chemistry DNA methylation Molecular Medicine |
Zdroj: | ChemBioChem |
ISSN: | 1439-4227 |
DOI: | 10.1002/cbic.201800047 |
Popis: | The ten-eleven translocation (TET) protein family, consisting of three isoforms (TET1/2/3), have been found in mammalian cells and have a crucial role in 5-methylcytosine demethylation in genomic DNA through the catalysis of oxidation reactions assisted by 2-oxoglutarate (2OG). DNA methylation/demethylation contributes to the regulation of gene expression at the transcriptional level, and recent studies have revealed that TET1 is highly elevated in malignant cells of various diseases and related to malignant alteration. TET1 inhibitors based on a scaffold of thioether macrocyclic peptides, which have been discovered by the random nonstandard peptide integrated discovery (RaPID) system, are reported. The affinity-based selection was performed against the TET1 compact catalytic domain (TET1CCD) to yield thioether macrocyclic peptides. These peptides exhibited inhibitory activity of the TET1 catalytic domain (TET1CD), with an IC50 value as low as 1.1 μm. One of the peptides, TiP1, was also able to inhibit TET1CD over TET2CD with tenfold selectivity, although it was likely to target the 2OG binding site; this provides a good starting point to develop more selective inhibitors. |
Databáze: | OpenAIRE |
Externí odkaz: |