Algebraic intersection for translation surfaces in the stratum ℋ ( 2 )

Autor: Smaïl Cheboui, Arezki Kessi, Daniel Massart
Přispěvatelé: Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2021, 359 (1), pp.65-70. ⟨10.5802/crmath.153⟩
ISSN: 1631-073X
1778-3569
DOI: 10.5802/crmath.153⟩
Popis: We study the quantity $\mbox{KVol}$ defined as the supremum, over all pairs of closed curves, of their algebraic intersection, divided by the product of their lengths, times the area of the surface. The surfaces we consider live in the stratum $\mathcal{H}(2)$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n,n)$ of surfaces such that $\mbox{KVol}(L(n,n)) \longrightarrow 2$ when $n$ goes to infinity, $2$ being the conjectured infimum for $\mbox{KVol}$ over $\mathcal{H}(2)$.
Databáze: OpenAIRE