Proactive Scalability and Management of Resources in Hybrid Clouds via Machine Learning
Autor: | Bruno Ciciani, Pierangelo Di Sanzo, Luca Forte, Alessandro Pellegrini, Dimiter R. Avresky |
---|---|
Přispěvatelé: | Avresky, Dimiter R., DI SANZO, Pierangelo, Pellegrini, Alessandro, Ciciani, Bruno, Forte, Luca |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | NCA |
Popis: | In this paper, we present a novel framework for supporting the management and optimization of application subject to software anomalies and deployed on large scale cloud architectures, composed of different geographically distributed cloud regions. The framework uses machine learning models for predicting failures caused by accumulation of anomalies. It introduces a novel workload balancing approach and a proactive system scale up/scale down technique. We developed a prototype of the framework and present some experiments for validating the applicability of the proposed approaches. |
Databáze: | OpenAIRE |
Externí odkaz: |