Challenging the robustness of optimal portfolio investment with moving average-based strategies

Autor: Frederic Abergel, Ahmed Bel Hadj Ayed, Grégoire Loeper
Přispěvatelé: Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec, Monash University [Clayton], Chaire de finance quantitative (FiQuant), CentraleSupélec-CentraleSupélec
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Quantitative Finance
Quantitative Finance, Taylor & Francis (Routledge), 2018, 19 (1), pp.123-135. ⟨10.1080/14697688.2018.1468080⟩
ISSN: 1469-7688
1469-7696
DOI: 10.1080/14697688.2018.1468080⟩
Popis: International audience; The aim of this paper is to compare the performance of a theoretically optimal portfolio with that of a moving average-based strategy in the presence of parameter misspecification. The setting we consider is that of a stochastic asset price model where the trend follows an unobservable Ornstein–Uhlenbeck process. For both strategies, we provide the asymptotic expectation of the logarithmic return as a function of the model parameters. Then, numerical examples are given, showing that an investment strategy using a moving average crossover rule is more robust than the optimal strategy under parameter misspecification.
Databáze: OpenAIRE