Short rotation coppice for revaluation of contaminated land
Autor: | H, Vandenhove, Y, Thiry, A, Gommers, F, Goor, J M, Jossart, E, Holm, T, Gäfvert, J, Roed, A, Grebenkov, S, Timofeyev, T, Gäufert |
---|---|
Rok vydání: | 2001 |
Předmět: |
Irrigation
Republic of Belarus Health Toxicology and Mutagenesis Radiation Dosage Trees Contaminated land Soil Radiation Protection Environmental protection Agricultural land Humans Soil Pollutants Radioactive Environmental Chemistry Biomass Waste Management and Disposal Land use Ecology Crop yield Agriculture Forestry General Medicine Pollution Soil contamination Short rotation forestry Europe Cesium Radioisotopes Potassium Environmental science Short rotation coppice Radioactive Hazard Release Ukraine Power Plants |
Zdroj: | Journal of Environmental Radioactivity. 56:157-184 |
ISSN: | 0265-931X |
Popis: | When dealing with large-scale environmental contamination, as following the Chernobyl accident, changed land use such that the products of the land are radiologically acceptable and sustain an economic return from the land is a potentially sustainable remediation option. In this paper, willow short rotation coppice (SRC) is evaluated on radiological, technical and economic grounds for W. European and Belarus site conditions. Radiocaesium uptake was studied in a newly established and existing SRC. Only for light-texture soils with low soil potassium should cultivation be restricted to soils with contamination levels below 100 370 kBq m(-2) given the TFs on these soils (5 x 10(-4) and 2 x 10(-3) m(2) kg(-1)) and considering the Belarus exemption limit for firewood (740 Bq kg(-1)). In the case of high wood contamination levels ( > 1000 Bq kg(-1)). power plant personnel working in the vicinity of ash conveyers should be subjected to radiation protection measures. For appropriate soil conditions, potential SRC yields are high. In Belarus, most soils are sandy with a low water retention, for which yield estimates are too low to make production profitable without irrigation. The economic viability should be thoroughly calculated for the prevailing conditions. In W. Europe, SRC production or conversion is not profitable without price incentives. For Belarus, the profitability of SRC on the production side largely depends on crop yield and price of the delivered bio-fuel. Large-scale heat conversion systems seem the most profitable and revenue may be considerable. Electricity routes are usually unprofitable. It could be concluded that energy production from SRC is potentially a radiologically and economically sustainable land use option for contaminated agricultural land. (C) 2001 Elsevier Science Ltd. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |