Computer simulations reveal changes in the conformational space of the transcriptional regulator MosR upon the formation of a disulphide bond and in the collective motions that regulate its DNA-binding affinity

Autor: Eduardo Horjales, Amanda Souza Câmara
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0301 basic medicine
SIMULAÇÃO
Molecular biology
Protein Conformation
Regulator
lcsh:Medicine
Molecular Dynamics
Biochemistry
Dissociation (chemistry)
chemistry.chemical_compound
Molecular dynamics
Computational Chemistry
Transcriptional regulation
Biochemical Simulations
Amino Acids
lcsh:Science
chemistry.chemical_classification
Multidisciplinary
Crystallography
Chemistry
Organic Compounds
Physics
Condensed Matter Physics
Nucleic acids
Physical Sciences
Crystal Structure
Oxidation-Reduction
Research Article
Protein Binding
030103 biophysics
Biophysical Simulations
Protein Structure
Biophysics
Molecular Dynamics Simulation
03 medical and health sciences
Motion
Bacterial Proteins
Oxidoreductase
DNA-binding proteins
Genetics
Solid State Physics
Sulfur Containing Amino Acids
Cysteine
lcsh:R
Organic Chemistry
Chemical Compounds
Biology and Life Sciences
Computational Biology
DNA structure
Proteins
DNA-binding domain
DNA
Mycobacterium tuberculosis
Macromolecular structure analysis
030104 developmental biology
Helix
lcsh:Q
Transcription Factors
Zdroj: PLoS ONE
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
PLoS ONE, Vol 13, Iss 2, p e0192826 (2018)
ISSN: 1932-6203
Popis: M. tuberculosis oxidation sense Regulator (MosR) is a transcriptional regulator from Mycobacterium tuberculosis. It senses the environment oxidation and regulates the expression of a secreted oxidoreductase, thus defending the bacilli against oxidative stress from the phagosome. While most of the members of the Multiple antibiotics resistance Regulator (MarR) family are ligand-responsive, MosR may dissociate from its DNA site upon formation of an intrachain disulphide bond. However, the structure of MosR in its oxidized state is not known, and it is not clear how the formation of this disulphide bond would lead to the conformational changes required for dissociation of the DNA. Nonetheless, MosR presents two crystallographically resolved conformations in its reduced state: bound and unbound to DNA. We managed to simulate MosR unbound to the DNA, both in the presence and in the absence of the disulphide bond. Our results indicate that this disulphide bond precludes the N-terminal residues from adopting a conformation that stands in-between the helix α1 and the DNA binding domain (DBD) from the other chain. Once this conformation is achieved in the reduced state, this DBD detaches from the dimerization domain and becomes more flexible, being able to perform motions with higher amplitude and higher degree of collectivity. Only then, MosR may achieve a conformation where its recognition helices fit into the major grooves of its DNA site. The analysis of the collective motions performed by MosR, during the different situations sampled by the molecular dynamics (MDs), was only possible by the method of filtering harmonic modes with specific frequencies. The frequency of the collective motions performed by the DBD of MosR in the reduced state to achieve a DNA-binding conformation is in the range of 20 to 50 MHz, but it may be associated to more sporadic events since it requires the combination of a suitable conformation of the N-terminal residues.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje