Separation principle in the fractional Gaussian linear-quadratic regulator problem with partial observation

Autor: M. Viot, Alain Le Breton, Marina Kleptsyna
Přispěvatelé: Département de Mathématiques [Le Mans], Le Mans Université (UM), Statistique et Modélisation Stochatisque (SMS), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: ESAIM: Probability and Statistics
ESAIM: Probability and Statistics, EDP Sciences, 2008, 12, pp.94-126. ⟨10.1051/ps:2007046⟩
ISSN: 1292-8100
1262-3318
DOI: 10.1051/ps:2007046⟩
Popis: International audience; In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous-time with partial observation. For a controlled linear system where both the state and observation processes are driven by fractional Brownian motions, we describe explicitly the optimal control policy which minimizes a quadratic performance criterion. Actually, we show that a separation principle holds, i.e., the optimal control separates into two stages based on optimal filtering of the unobservable state and optimal control of the filtered state. Both finite and infinite time horizon problems are investigated.
Databáze: OpenAIRE