Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device
Autor: | Jinghui Luo, Katherine A. Muratore, Edgar A. Arriaga, Alexandra Ros |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Microfluidics Nanoparticle Nanotechnology Mitochondria Liver 01 natural sciences Article Analytical Chemistry 03 medical and health sciences Electrokinetic phenomena Mice Animals Particle Size Organelles Chemistry 010401 analytical chemistry Proteins Orders of magnitude (numbers) Microfluidic Analytical Techniques 0104 chemical sciences Nonlinear system 030104 developmental biology Nanocrystal Chemical physics Particle Nanoparticles Particle size |
Zdroj: | Analytical chemistry. 88(11) |
ISSN: | 1520-6882 |
Popis: | Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for μm and subμm colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals. |
Databáze: | OpenAIRE |
Externí odkaz: |