Distinct effects of DNA-PKcs and Artemis inactivation on signal joint formation in vivo

Autor: Evelyne Jouvin-Marche, Cédric Touvrey, Serge M. Candéias, Chrystelle Couedel, Jean-Pierre de Villartay, Maria Jasin, Pauline Soulas, Rachel Couderc, Patrice N. Marche
Přispěvatelé: Contrôle moléculaire de la réponse immune specifique, Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Developmental Biology Program, Memorial Sloane Kettering Cancer Center [New York], Developpement Normal et Pathologique du Système Immunitaire, Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Memorial Sloan Kettering Cancer Center, Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'oncologie/développement Albert Bonniot de Grenoble ( INSERM U823 ), Université Joseph Fourier - Grenoble 1 ( UJF ) -CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Laboratoire Lésions des Acides Nucléiques ( LAN ), Service de Chimie Inorganique et Biologique ( SCIB - UMR E3 ), Institut Nanosciences et Cryogénie ( INAC ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes ( UGA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut Nanosciences et Cryogénie ( INAC ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes ( UGA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), Candéias, Serge, Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Protein kinase complex
MESH : Molecular Sequence Data
MESH : DNA
MESH : Lymphocytes
DNA-Activated Protein Kinase
Mice
SCID

MESH: Base Sequence
[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

Artemis
Mice
0302 clinical medicine
MESH: Endonucleases
MESH : Antigens
Nuclear

MESH : Endonucleases
[ SDV.IMM ] Life Sciences [q-bio]/Immunology
MESH: Animals
Lymphocytes
MESH: Mice
SCID

MESH : DNA-Activated Protein Kinase
DNA-PKcs
ComputingMilieux_MISCELLANEOUS
0303 health sciences
biology
V(D)J recombination
MESH: DNA
Nuclear Proteins
Antigens
Nuclear

T cell receptor genes
Junctional diversity
DNA-Binding Proteins
Non-homologous end joining
[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunology
[SDV.IMM.IA] Life Sciences [q-bio]/Immunology/Adaptive immunology
[SDV.IMM]Life Sciences [q-bio]/Immunology
MESH : DNA-Binding Proteins
MESH: Enzyme Activation
[SDV.IMM] Life Sciences [q-bio]/Immunology
Molecular Sequence Data
Immunology
MESH : Mice
Inbred C57BL

03 medical and health sciences
MESH: Mice
Inbred C57BL

signal joints
MESH : Mice
Animals
Protein kinase A
MESH: Antigens
Nuclear

MESH: Mice
Ku Autoantigen
Molecular Biology
030304 developmental biology
Nuclease
MESH: Molecular Sequence Data
Base Sequence
MESH : Nuclear Proteins
[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

DNA
Endonucleases
Molecular biology
MESH : Mice
SCID

Enzyme Activation
Mice
Inbred C57BL

MESH: DNA-Activated Protein Kinase
biology.protein
MESH: Lymphocytes
MESH : Base Sequence
MESH : Animals
Homologous recombination
MESH : Enzyme Activation
MESH: Nuclear Proteins
MESH: DNA-Binding Proteins
030217 neurology & neurosurgery
Zdroj: Molecular Immunology
Molecular Immunology, 2008, 45 (12), pp.3383-3391
Molecular Immunology, Elsevier, 2008, 45 (12), pp.3383-91. 〈10.1016/j.molimm.2008.04.004〉
Molecular Immunology, Elsevier, 2008, 45 (12), pp.3383-91. ⟨10.1016/j.molimm.2008.04.004⟩
Molecular Immunology, 2008, 45 (12), pp.3383-91. ⟨10.1016/j.molimm.2008.04.004⟩
Molecular Immunology, Elsevier, 2008, 45 (12), pp.3383-3391
ISSN: 0161-5890
DOI: 10.1016/j.molimm.2008.04.004〉
Popis: International audience; The assembly of functional immune receptor genes via V(D)J recombination in developing lymphocytes generates DNA double-stranded breaks intermediates that are repaired by non-homologous end joining (NHEJ). This repair pathway requires the sequential recruitment and activation onto coding and signal DNA ends of several proteins, including the DNA-dependent protein kinase and the nuclease Artemis. Artemis activity, triggered by the DNA-dependent protein kinase, is necessary to process the genes hairpin-sealed coding ends but appears dispensable for the ligation of the reciprocal phosphorylated, blunt-ended signal ends into a signal joint. The DNA-dependent protein kinase is however present on signal ends and could potentially recruit and activate Artemis during signal joint formation. To determine whether Artemis plays a role during the resolution of signal ends during V(D)J recombination, we analyzed the structure of signal joints generated in developing thymocytes during the rearrangement of T cell receptor genes in wild type mice and mice mutated for NHEJ factors. These joints exhibit junctional diversity resulting from N nucleotide polymerization by the terminal nucleotidyl transferase and nucleotide loss from one or both of the signal ends before they are ligated. Our results show that Artemis participates in the repair of signal ends in vivo. Furthermore, our results also show that while the DNA-dependent protein kinase complex protects signal ends from processing, including deletions, Artemis seems on the opposite to promote their accessibility to modifying enzymes. In addition, these data suggest that Artemis might be the nuclease responsible for nucleotide loss from signal ends during the repair process.
Databáze: OpenAIRE