Predicting electrotransfer in ultra-high frequency sub-microsecond square wave electric fields
Autor: | Saulius Šatkauskas, Auksė Zinkevičienė, Irutė Girkontaitė, Arūnas Murauskas, Paulius Ruzgys, Vitalij Novickij, Gediminas Staigvila, Jurij Novickij |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials science
Finite Element Analysis Biophysics Medicine (miscellaneous) CHO Cells Conductivity Membrane Potentials 03 medical and health sciences 0302 clinical medicine Cricetulus Electric field Animals Polarization (electrochemistry) Microwaves business.industry Electroporation Biological Transport General Medicine Square wave Microsecond 030220 oncology & carcinogenesis Optoelectronics business Extracellular Space Ultrashort pulse 030217 neurology & neurosurgery Voltage Propidium |
Zdroj: | Electromagnetic biology and medicine. 39(1) |
ISSN: | 1536-8386 |
Popis: | Measurement of cell transmembrane potential (TMP) is a complex methodology involving patch-clamp methods or fluorescence-based potentiometric markers, which have limited to no applicability during ultrafast charging and relaxation phenomena. In such a case, analytical methods are applied for evaluation of the voltage potential changes in biological cells. In this work, the TMP-based electrotransfer mechanism during ultra-high frequency (≥1 MHz) electric fields is studied and the phenomenon of rapid membrane charge accumulation, which is non-occurrent during conventional low-frequency electroporation is simulated using finite element method (FEM). The influence of extracellular medium conductivity (0.1, 1.5 S/m) and pulse rise/fall times (10-50 ns) TMP generation are presented. It is shown that the medium conductivity has a dramatic influence on the electroporation process in the high-frequency range of applied pulsed electric fields (PEF). The applied model allowed to grasp the differences in polarization between 100 and 900 ns PEF and enabled successful prediction of the experimental outcome of propidium iodide electrotransfer into CHO-K1 cells and the conductivity-dependent patterns of MHz range PEF-triggered electroporation were determined. The results of this study form recommendations for development and pre-evaluation of future PEF protocols and generators based on ultra-high frequency electroporation for anticancer and gene therapies. |
Databáze: | OpenAIRE |
Externí odkaz: |