Measuring Diversity in Heterogeneous Information Networks
Autor: | Pedro Ramaciotti Morales, Fabien Tarissan, Rémy Poulain, Raphaël Fournier-S'niehotta, Robin Lamarche-Perrin, Lionel Tabourier |
---|---|
Přispěvatelé: | Médialab (Sciences Po) (Médialab), Sciences Po (Sciences Po), ComplexNetworks, LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Systèmes Complexes - Paris Ile-de-France (ISC-PIF), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Sorbonne Université (SU)-École polytechnique (X)-École normale supérieure - Cachan (ENS Cachan)-Université Paris 1 Panthéon-Sorbonne (UP1), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Institut des Sciences sociales du Politique (ISP), Université Paris Nanterre (UPN)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
General Computer Science Computer science Computer Science - Artificial Intelligence Ecology (disciplines) media_common.quotation_subject Computer Science - Information Theory 0102 computer and information sciences 02 engineering and technology Recommender system Information theory 01 natural sciences [INFO.INFO-SI]Computer Science [cs]/Social and Information Networks [cs.SI] Theoretical Computer Science Computer Science - Information Retrieval Computer Science - Computers and Society Computers and Society (cs.CY) 0202 electrical engineering electronic engineering information engineering Social media media_common Artificial neural network Information Theory (cs.IT) Data science Artificial Intelligence (cs.AI) 010201 computation theory & mathematics 020201 artificial intelligence & image processing Information Retrieval (cs.IR) Network analysis Diversity (politics) |
Zdroj: | Theoretical Computer Science Theoretical Computer Science, Elsevier, 2021, 859, pp.80-115. ⟨10.1016/j.tcs.2021.01.013⟩ |
ISSN: | 1879-2294 0304-3975 |
DOI: | 10.1016/j.tcs.2021.01.013⟩ |
Popis: | Diversity is a concept relevant to numerous domains of research varying from ecology, to information theory, and to economics, to cite a few. It is a notion that is steadily gaining attention in the information retrieval, network analysis, and artificial neural networks communities. While the use of diversity measures in network-structured data counts a growing number of applications, no clear and comprehensive description is available for the different ways in which diversities can be measured. In this article, we develop a formal framework for the application of a large family of diversity measures to heterogeneous information networks (HINs), a flexible, widely-used network data formalism. This extends the application of diversity measures, from systems of classifications and apportionments, to more complex relations that can be better modeled by networks. In doing so, we not only provide an effective organization of multiple practices from different domains, but also unearth new observables in systems modeled by heterogeneous information networks. We illustrate the pertinence of our approach by developing different applications related to various domains concerned by both diversity and networks. In particular, we illustrate the usefulness of these new proposed observables in the domains of recommender systems and social media studies, among other fields. 43 pages |
Databáze: | OpenAIRE |
Externí odkaz: |