Multiple control of few-layer Janus MoSSe systems

Autor: Hai-Ping Cheng, Shuanglong Liu, James N. Fry
Rok vydání: 2021
Předmět:
Zdroj: Physical Review Materials. 5
ISSN: 2475-9953
DOI: 10.1103/physrevmaterials.5.064007
Popis: In this computational work based on density functional theory, we study the electronic and electron transport properties of asymmetric multilayer MoSSe junctions, known as Janus junctions. Focusing on four-layer systems, we investigate the influence of electric field, electrostatic doping, strain, and interlayer stacking on the electronic structure. We discover that a metal-to-semiconductor transition can be induced by an out-of-plane electric field. The critical electric field for such a transition can be reduced by in-plane biaxial compressive strain. Due to an intrinsic electric field, a four-layer MoSSe can rectify out-of-plane electric current. The rectifying ratio reaches 34.1 in a model junction Zr/four-layer MoSSe/Zr and can be further enhanced by increasing the number of MoSSe layers. In addition, we show a drastic sudden vertical compression of four-layer MoSSe due to in-plane biaxial tensile strain, indicating a second phase transition. Furthermore, an odd-even effect on electron transmission at the Fermi energy for Zr/$n$-layer MoSSe/Zr junctions with $n=1,\phantom{\rule{0.16em}{0ex}}2,\phantom{\rule{0.16em}{0ex}}3,\ensuremath{\cdots},10$ is observed. These findings reveal the richness of physics in this asymmetric system, and they strongly suggest that the properties of four-layer MoSSe are highly tunable, thus providing a guide to future experiments relating to materials research and nanoelectronics.
Databáze: OpenAIRE