Eigenfunctions of the Fourier Transform with specified zeros

Autor: Douglas P. Hardin, Ahram S. Feigenbaum, Peter J. Grabner
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: Eigenfunctions of the Fourier transform with prescribed zeros played a major role in the proof that theE8and the Leech lattice give the best sphere packings in respective dimensions 8 and 24 by Cohn, Kumar, Miller, Radchenko and Viazovska. The functions used for a linear programming argument were constructed as Laplace transforms of certain modular and quasimodular forms. Similar constructions were used by Cohn and Gonçalves to find a function satisfying an optimal uncertainty principle in dimension 12. This paper gives a unified view on these constructions and develops the machinery to find the underlying forms in all dimensions divisible by 4. Furthermore, the positivity of the Fourier coefficients of the quasimodular forms occurring in this context is discussed.
Databáze: OpenAIRE