Lipschitz geometry of pairs of normally embedded Hölder triangles
Autor: | Lev Birbrair, Andrei Gabrielov |
---|---|
Rok vydání: | 2022 |
Předmět: | |
DOI: | 10.48550/arxiv.2201.06132 |
Popis: | We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence class of such surface germs, called $στ$-pizza, and conjecture that, in this special case, it is a complete combinatorial invariant of outer bi-Lipschitz equivalence. 24 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |