Lipschitz geometry of pairs of normally embedded Hölder triangles

Autor: Lev Birbrair, Andrei Gabrielov
Rok vydání: 2022
Předmět:
DOI: 10.48550/arxiv.2201.06132
Popis: We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence class of such surface germs, called $στ$-pizza, and conjecture that, in this special case, it is a complete combinatorial invariant of outer bi-Lipschitz equivalence.
24 pages, 7 figures
Databáze: OpenAIRE