Assembly of Drosophila centromeric chromatin proteins during mitosis

Autor: Gary H. Karpen, Barbara G. Mellone, Isaac M. Oderberg, Kathryn J. Grive, Vladimir Shteyn, Sarion R. Bowers
Přispěvatelé: Biggins, Sue
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: PLoS Genetics, Vol 7, Iss 5, p e1002068 (2011)
PLoS genetics, vol 7, iss 5
PLoS Genetics
ISSN: 1553-7404
1553-7390
Popis: Semi-conservative segregation of nucleosomes to sister chromatids during DNA replication creates gaps that must be filled by new nucleosome assembly. We analyzed the cell-cycle timing of centromeric chromatin assembly in Drosophila, which contains the H3 variant CID (CENP-A in humans), as well as CENP-C and CAL1, which are required for CID localization. Pulse-chase experiments show that CID and CENP-C levels decrease by 50% at each cell division, as predicted for semi-conservative segregation and inheritance, whereas CAL1 displays higher turnover. Quench-chase-pulse experiments demonstrate that there is a significant lag between replication and replenishment of centromeric chromatin. Surprisingly, new CID is recruited to centromeres in metaphase, by a mechanism that does not require an intact mitotic spindle, but does require proteasome activity. Interestingly, new CAL1 is recruited to centromeres before CID in prophase. Furthermore, CAL1, but not CENP-C, is found in complex with pre-nucleosomal CID. Finally, CENP-C displays yet a different pattern of incorporation, during both interphase and mitosis. The unusual timing of CID recruitment and unique dynamics of CAL1 identify a distinct centromere assembly pathway in Drosophila and suggest that CAL1 is a key regulator of centromere propagation.
Author Summary The centromere is essential for kinetochore formation, chromosome attachment to spindle microtubules, and equal segregation of the genome to daughter cells. Centromeres are epigenetically inherited through a unique type of chromatin which contains centromere-specific proteins. At each round of DNA replication, centromeric proteins become diluted and must be replenished to ensure faithful maintenance of the centromere locus through cell division. Whether divergent eukaryotes share a common strategy for centromere identity and propagation remains an unanswered question. Here, we examine how Drosophila centromere proteins re-distribute after replication, and we determine the cell-cycle dynamics of their replenishment. We show that three chromatin components required for centromere maintenance display distinct dynamics during the cell cycle; surprisingly, two components are assembled at centromeres during mitosis. These results suggest a new model for regulation of centromere assembly in Drosophila, which emphasizes a key role for the Dipteran-specific protein CAL1.
Databáze: OpenAIRE