Verification of machine learning based cyber-physical systems: a comparative study

Autor: Arthur Clavière, Laura Altieri Sambartolomé, Eric Asselin, Christophe Garion, Claire Pagetti
Přispěvatelé: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE), Collins Aerospace (FRANCE), Département d'Ingénierie des Systèmes Complexes - DISC (Toulouse, France)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: In this paper, we conduct a comparison of the existing formal methods for verifying the safety of cyber-physical systems with machine learning based controllers. We focus on a particular form of machine learning based controller, namely a classifier based on multiple neural networks, the architecture of which is particularly interesting for embedded applications. We compare both exact and approximate verification techniques, based on several real-world benchmarks such as a collision avoidance system for unmanned aerial vehicles.
Databáze: OpenAIRE